10/13/22

DATA WARE HOUSING AND DATA MINING - R20- III Year –I Semester - JNTUK

 Welcome to our channel madhavarao maganti Click  channel 

The Data Warehousing stage involves collecting data, organizing it, transforming it into a standard structure, optimizing it for analysis, and processing it.

The Data Mining stage involves analyzing data to discover unknown patterns, relationships, and insights.

UNIT WISE Importent Questions

click here Important Questions

click here Unitwise Questions with Answers

click here Objective type Questions

Problems Solutions of DWDM

click here Dwdm Problems Solutions

click here Apiori and FP growth Problems    

click here K-means Problem Solution

A database has four transactions. Let min_sup=60%  and min_conf=80%
TID                 Date                     Items bought
100                 10/15/2018         {K, A, B, D}
200                10/15/2018         {D, A, C, E, B}
300                 10/19/2018         {C, A, B, E}
400                 10/22/2018         {B, A, D}
i) Find all frequent items using Apriori & FP-growth,respectively. 
Compare the efficiency of the two meaning process.
ii)List all of the strong association rules.

click here apiori problem Solution 

DWDM Lab Manual

click here Lab manual

UNIT –I:

Data Warehousing and Online Analytical Processing: Data Warehouse: Basic concepts, Data Warehouse Modelling: Data Cube and OLAP, Data Warehouse Design and Usage, Data Warehouse Implementation, Introduction: Why and What is data mining, What kinds of data need to be mined and patterns can be mined, Which technologies are used, Which kinds of applications are targeted.

click here unit1 material

click here for  unit1 video

UNIT –II:

Data Pre-processing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization.

 click here for unit2 material

UNIT –III:

Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Attribute Selection Measures, Tree Pruning, Scalability and Decision Tree Induction, Visual Mining for Decision Tree Induction.

click here  for unit3 material

UNIT –IV:

Association Analysis: Problem Definition, Frequent Item set Generation, Rule Generation: Confident Based Pruning, Rule Generation in Apriori Algorithm, Compact Representation of frequent item sets, FPGrowth Algorithm. 

click here for Unit4 material

UNIT –V

Cluster Analysis: Overview, Basics and Importance of Cluster Analysis, Clustering techniques, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bi-secting K Means,

click here for unit5 material






No comments:

Blog Archive